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Abstract: This paper describes Genetic Algorithm (GA) for minimizing the energy of protein
tertiary structure. In the conventional study, Simulated Annealing (SA) is used to be applied for
this problem. In the previous studies, it is also reported that it is difficult to find the optimum
solutions by GAs. Dual individual Distributed Genetic Algorithm (Dual DGA) is one of DGAs and
is good at global search. The Dual DGA also maintains the diversity of the solutions. Therefore,
it can be supposed that they can get a good solution in energy minimization of protein tertiary
structure. In this study, Dual DGA is applied to protein tertiary structure. The target protein in
this paper is Met-enkephalin that consists of 5 amino acids sequences. The results show that Dual

DGA has the higher searching capability than SA.
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1. Introduction

Protein is a substance directly connected to the biologi-
cal phenomena and its biological functions are said to be
derived from its tertiary structure'). Thus, clarification
of its tertiary structure leads to an explanation of the
biological phenomena process. Tertiary structure of the
protein is believed to correspond to the conformation
with the lowest residual potential energy?). Therefore,
as one of the methods to predict the tertiary structure of
proteins, minimization of the energy function has been
studied. Simulated Annealing (SA) has often been em-
ployed as the optimization method to predict the ter-
tiary structure of proteins by the minimization of the
energy®).

Genetic Algorithm (GA) is one of the powerful emer-
gent optimization algorithms®. GA is expected to be an
alternative method for finding protein tertiary structure
that has the minimum energy. However, it is reported
that it is very difficult to find the optimum solution
only by GAs®. Because there are many sub optimum
points in the landscape of the protein energy function,
the search is converged in the early stage.

In this paper, Dual Individual Distributed Genetic
Algorithm (Dual DGA) is used for finding the structure.
The Dual DGA is extended version of Distributed GAs
(DGAs)%. Usually, there is only one population in GAs.
On the other hand, in DGA, the total population is di-
vided into sub populations. Each sub population is of-
ten called ”island”. In each sub population, normal ge-
netic operations are performed for several generations.

After the certain generation, some of the individuals are
chosen and are moved to the other island. This opera-
tion is called ”migration”. Because the population size
in each island is small, the early convergence may hap-
pen in each island. However, the migration operation
prevents the early convergence and maintains the diver-
sity of the solutions during the search. Therefore, it was
reported that DGA has a higher searching capability
than conventional GA 7. In Dual DGA, there are only
two individuals in each island. Dual DGA can maintain
the diversity of the solutions in the early stage of the
search and has the high searching capability. DGA has
many parameters that users should determine before
the simulation. In Dual DGA, since some parameters,
such as the number of population, migration rate, and
crossover rate are determined automatically, users can
use Dual DGA easily.

In this paper, Dual DGA is applied for minimizing the
energy of protein structure. The target protein is Met-
enkephalin that consists of five amino acids. Through
the simulation, it can be said that Dual DGA find the
minimum energy of protein structure and GAs can pre-
dict the protein structure.

2. Energy Minimization of Pro-

tein Tertiary Structure
2.1 Related Works

It is said that the real protein tertiary structure has
the minimum energy of the structure among the pos-



sible states. Therefore, one of the strategies to pre-
dict the protein tertiary structure is minimizing the
energy by changing the structure. In the several for-
mer studies, the energy of protein tertiary structure
is tried to minimize using GAs. In those studies, two
types of the protein models are used; those are the grid
type and the real molecular type. In the grid model,
protein structure is simplified into grid structure. In
this model, since combinatorial numbers of the pos-
sible states are reduced, the calculation cost becomes
small®. However, the precise prediction of the struc-
ture cannot be expected. Using this model, Unger and
Moult applied the GA?) and Krasnogor applied multi-
meme GA'9. On the other hand, in the real molecu-
lar model, the energy is determined by considering all
the molecular effects in protein. Therefore, the pre-
cise prediction can be expected?. However, the cal-
culation cost is very huge. Kobayashi et al. used the
real coded GA') and Okamoto developed Simulated
Annealing (SA) approach?).

However, it was reported that the minimization of
protein tertiary structure is very difficult by GAs® 9.

2.2 Energy function of protein structure

Protein consists of 20 types of amino acids. Between
the atoms, energies, such as an interaction and a hy-
drogen bond, exist. The summation of these energies
becomes the total energy of protein structure. In this
paper, the energy function of protein structure that was
introduced by Okamoto et al.?) is also applied. The fol-
lowing equation is the energy function.

Eiot = Ep + Es (1)

In the equation (1), the total energy function
E,ot(kcal /mol)consists of molecular’ structure energy
Ep and solvent free energyEs. Eg is the term that is de-
termined by several solvent contributions. Ep consists
of electrostatic term E¢, Lennard-Jones term Ep,;, hy-
drogen bond term Fpp, and torsion energy term Fyg,..
This expression is shown in Equation2.
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In this equation, 7;; expresses the distance between ith
atom and jth atom. e is dielectric constant and x? is
the dihedral angle of ith bonding.

Parameters and  geometric  information  of
ECEPP/2'% 13 1) are used for the energy func-

tion. The simulation is supposed in gas-phase case.
The dielectric constant € is 2.0 and Eg is 0.0.

3. Dual Individual
Genetic Algorithm

Distributed

DGAs are powerful algorithms that can derive better
solutions with lower computation costs than Canoni-
cal GAs. Therefore, many researchers were studied on
DGAs! 1617 However, DGAs have the disadvantage
that they require careful selection of several parameters,
such as the migration rate and migration intervals, that
affect the quality of the solutions.

Dual DGA' is an extended version of DGA. The
Dual DGA has only two individuals in each island. The
concept is shown in Figure 1.

Number of individuals

in each sub Population = 2
Migration Rate = 0.5 / P

\. Crossover Rate = 1.0

T e
Co

o\
/o
o
Figure 1: Fixed parameter of Dual DGA

In the Dual DGA, the following operations are per-
formed.
The operation of Dual DGA is summarized in Fig.2.
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Figure 2: Flowchart of Dual DGA



e There are only two individuals in each island.

e Migration method: The individual who will mi-
grate is chosen in random. The chosen individual
is copied to the island. In this island, the migrated
individual is substituted for the worst individual.

e Migration topology: The stepping stone method
is performed and the direction of the migration is
determined randomly at every migration event.

e Crossover: In this paper, one point crossover is
used. From two parent individuals produce two
children. These four individuals are remained until
the selection is performed.

e Mutation: One of the bits of the individual is cho-
sen in random and the bit is flipped. The chosen bit
for each individual in an island should be different.

e Selection: The individual who has the best fitness
value among the four individuals is chosen to re-
main. The individual who has the best fitness value
in the previous generation is also chosen to remain.

One of the advantages of Dual DGA is that users are
free from setting some of the parameters. By limiting
the population to two individuals on each island, the
Dual DGA model enables the following parameters to
be determined automatically:

e crossover rate: 1.0
e number of islands: total population size/2

e migration rate: 0.5

4. Experiments

To discuss the searching ability of the Dual DGA for
minimizing the energy of protein tertiary structures, the
small protein is targeted and the results of the Dual
DGA are compared with those of the DGA.

4.1 Met-enkephalin

The target protein in this chapter is Met-enkephalin.
Met-enkephalin is the protein that consists of five amino
acids. The sequence of amino acids of Met-enkephalin
is illustrated in Fig.3. It has been already derived that
the energy of this protein is less than E —11kcal /mol '*)
that is derived by ECEPP/2 energy function ' 13 14),
In this paper, it is also considered that the optimum
structure is derived when the structure has the energy
less than E — 11kcal/mol.

In the experiments, we choose 19 dihedral angles of
Met-enkephalin as design variables. Ten of them are
®¢1,%1, ..., ¥5, 5 in the main chain and nine of them are
Xi...X3 in the side chain. The range of these design
variables is from —180° to 180°.
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Figure 3: Met-enkephalin molecule

4.2 Parameters

The energy of Met-enkephalin is minimized by Dual
DGA and DGA. There are several parameters in Dual
DGA and DGA. The used parameters are summarized
in Table 1.

Table 1: Used Parameters

| model H DGA | Dual DGA |
Total Population size 800, 1600, 3200, 6400
Sub Population Size 16,84 | 2
Number of Design Variables 19
Chromosome Length 171
(=19 x 9 Design Variable)
Selection Tournament -
Tournament Size 2 -
Crossover Rate 1.0
Crossover 1pt. crossover
Mutation Rate 0.006 (=1 /171)
Migration Interval 1,2,3,4,5,6,7,8,9,10
Migration Rate 0.25 0.5
Number of Elites 1 -
Terminal Criterion 1,900,000 evaluations

In these parameters, several types of parameters for
the population size and migration interval are prepared.
The rest parameters are fixed. There are 4, 8, 16 is-
lands in DGA. When DGA has n islands, it is expressed
"DGA(n)”. Simulation will be terminated when the
protein energy evaluation function is called 1,900,000
times. This terminal condition is same as Okamoto’s
experiment !9). In the following sections, all the results
are derived from 30 trials.

4.3 Success Rate

In Fig.4, the success rates of each DGA and Dual DGA
case are shown. The success ratio is the rate of the
number of trials that derive the optimum solutions with
the number of all trials.

Dual DGA with 6400 population size and three mi-
gration interval derives the best success rate (0.93 =
29/30). In the most cases, when the population size be-
comes bigger, the success rate becomes better. Huge mi-
gration interval also affects the better solutions. How-
ever, when the population size is 6400, there is the op-
timum point for the migration interval. These results



indicate the following things; the population size 6400 is
adequate for this terminal condition and the optimum
migration interval is existed.

4.4 Best, average, and worst energy val-
ues of each method

In Fig.5, the average energy values of each method are
shown. In the same way, the best values are shown in
Fig.6 and the worst values are shown in Fig.7.

From these figures, the following three tendencies can
be derived. Firstly, in the most cases, the results of Dual
DGA are better than those of DGA. Secondly, when the
population size is bigger, the results are getting better.
This tendency was also derived in the former section.
Finally, when the migration interval becomes longer, the
results become better in the most cases. However, since
the population size 6400 is adequate with this terminal
condition, the optimum point of migration interval is
also existed in this case.

4.5 Search transition

In Fig.8, the search transition is illustrated. This is the
case when the population size is 6400 and migration in-
terval is 3. The results are the average of 30 trials. From
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Figure 8: Energy transition of Met-enkephalin (Popu-
laiton size:6400, Migration Interval:3)

this figure, it is found the following two tendencies. In
the former part of the search transition, the model who
has the smaller number of the islands finds the better
solutions. On the other hand, in the latter part of the
search transition, the model who has the bigger number
of the islands finds the better solutions. From these re-
sults, it can be said that, in the first stage of the search,
the model who has the bigger number of the islands,
especially Dual DGA, maintains the diversity of the so-
lutions and it is searching in the global area. Therefore,
the best values of this model are worth than that of the
model who has the smaller number of island. However,
in the second stage, Dual DGA may change to start
to search around the solution that has the best value.
Therefore, Dual DGA can derive the better solution at

the end of the simulation. From these discussions, it
can be concluded that the model who has the bigger
number of islands and Dual DGA can maintain the di-
versity of the solutions during search and they can find
the better solutions.

4.6 Comparison with the other methods

In this section, the success rates of Dual DGA and DGA
are compared with other methods; those are Okamoto’s
SA?0:21) and Parallel Simulated Annealing using Ge-
netic Crossover (PSA/GAc)?"). The results are also the
average of 30 trials.

In Fig.9, the success rates of Dual DGA and DGA
are better than that of SA. At the same time, it can
be found that Dual DGA and DGA are the same as
PSA/GAc. Since PSA/GAc is the very good algorithm
for minimizing the protein energy, it can be said that
Dual DGA and DGA derived the very good result in
finding the minimum energy of Met-enkephalin.
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Figure 9: Success Rate

5. Conclusion

In this study, the energy of Met-enkephalin that con-
sists of five amino acids is minimized by changing its
structure. The minimum energy state can be equal to
the real structure. The optimization methods are DGA
and Dual DGA. In the former studies, the optimum so-
lutions could not be derived by GA. On the other hand,
in this paper, it is found that DGA and Dual DGA
can successfully derived the optimum solution of Met-
enkephalin.

In the future research, Dual DGA is tried to apply for
deriving the minimum energy of the other huge proteins.
At the same time, the other types of GAs, such as real
coded GAs should be discussed.
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