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Abstract. In this paper, a new model of Probabilistic Model-Building
Genetic Algorithms (PMBGAs), Distributed PMBGA (DPMBGA), is
proposed. In the DPMBGA, the correlation among the design variables
is considered by Principal Component Analysis (PCA) when the off-
springs are generated. The island model is also applied in the DPMBGA
for maintaining the population diversity. Through the standard test func-
tions, some models of DPMBGA are examined. The DPMBGA where
PCA is executed in the half of the islands can find the good solutions in
the problems whether or not the problems have the correlation among
the design variables. At the same time, the search capability and some
characteristics of the DPMBGA are also discussed.

1 Introduction

Genetic Algorithms (GAs) are stochastic search algorithms based on the me-
chanics of natural selection and natural genetics[1]. The GAs can be applied to
several types of optimization problems by encoding design variables to individ-
uals. Recently, a new type of GA called the Probabilistic Model-Building GA
(PMBGA)[2] or Estimation of Distribution Algorithm (EDA)[3] have been the
focus. In the canonical GA, children are generated from parents that are selected
randomly. However, in the PMBGA and EDA, the good characteristics of par-
ents are inherited by children using the statistical information. Since children
must have the characteristics of parents, effective searching is expected. It is
reported that the PMBGA and EDA have a better search ability than that of
the canonical GA.

To make an effective search in continuous problems, the correlation among
the design variables should be handled. Therefore, new searching points should
be generated so that the correlation exists in the new points. Many real coded
GAs where the real vectors are used as a genotype treat this correlation problem.
One of the typical real coded GAs is Unimodal Normal Distribution Crossover
(UNDX)[4]. The UNDX is good at finding the optimum in the functions where
there is strong correlation between the design variables. Takahashi et al. intro-
duced a new method[5]; they used the Principle Component Analysis (PCA) and



the Individual Component Analysis (ICA). In the Takahashi et al. algorithm,
by using the PCA and the ICA, the individuals are transferred into the space.
Then, Blend Crossover (BLX-α) [6] is performed to the transferred individu-
als. The correlation between the design variables is considered by using both
ICA and PCA. At the same time, the diversity of the solutions is maintained
by using BLX-α. Besides GAs, some of the evolutionary strategies[7] have the
operation for the correlation relationship among the design variables. One of
them is the correlated mutation method that is proposed by Schwefel[8]. In this
method, there is a parameter that indicates the direction of the distribution of
the individuals. By using this parameter, the mutation operation is performed
by considering the correlation relationship among the design variables.

In this paper, a new PMBGA for continuous problems is proposed, which
is called Distributed PMBGA (DPMBGA). This is one of the real coded GAs
and the real vectors are treated as a genotype. In this algorithm, PCA is used
for transforming the set of the solutions. This operation handles the correlation
relationship among the design variables. The PMBGA sometimes lacks the di-
versity of the solutions during the search. To overcome this problem, a model of
the distributed GA is performed.

In this paper, the basic algorithm of the DPMBGA is explained. In this pa-
per, the DPMBGA is applied to solve test functions. Through these experiments,
the following four topics of the DPMBGA are discussed. Firstly, the DPMBGA
that is based on the distributed scheme is examined. Secondly, the search ca-
pability of the DPMBGA is compared with UNDX and Minimum Generation
Gap. From the results, it is found that the PCA prevents the effective search
in some functions. The discussion of the results is the third topic. Finally, the
search capability of the DPMBGA for functions whose optimum is located near
the boundary is discussed.

2 Distributed Probabilistic Model-Building Genetic
Algorithm

2.1 Flow of DPMBGA

In this paper, a new PMBGA is proposed: that is Distributed Probabilistic
Model-Building Genetic Algorithm (DPMBGA). The DPMBGA uses the dis-
tributed GA schem[9, 10]. Therefore, there are several subpopulations and the
migration operation is performed. In the DPMBGA, the following procedure is
performed for the migration operation. The topology of the migration is a ring.
This ring topology is formed randomly when the migration is performed. In the
ring, migrated individuals are moved from one subpopulation to the other in one
direction. The migrated individuals are chosen randomly and they are substi-
tuted for the individuals whose fitness values are the worst in the subpopulation.

In the DPMBGA, the following procedures are performed at the generation
t.(Fig. 1).

1. The elite individual is reserved.
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Fig. 1. DPMBGA

2. The individuals who have the good values of the fitness are sampled.
3. The above individuals are transferred by the PCA into the new space.
4. The new individuals are generated in the new space.
5. The new individuals are transferred into the original space.
6. The new individuals are substituted for the old individuals.
7. The mutation is operated.
8. When the reserved elite individuals are eliminated, they are recovered.
9. The new individuals are evaluated.

In the following sections, each operation is explained precisely.

2.2 Sampling Individuals for Probabilistic Model

The following operation is performed in each island. The individuals who have
the good evaluation values are chosen from each island Psub(t). The number of
these individuals is determined with the sampling rate Rs. These individuals
become sample individuals S(t). The new individuals are generated from the
information of these sampling individuals. These sampled individuals are cho-
sen according to the higher fitness values. However, the same individual is not
chosen repeatedly, hence the total number of S(t) is fixed. When the number
of individuals is low, the individuals are generated randomly and added to S(t)
and S(t) exists in each subpopulation.

2.3 Sampling Individuals for PCA

This operation is also performed in each island. S(t) is transferred by the PCA
operation. The PCA is determined using the information of individual set T (t).



T (t) is different from S(t) and T (t) is formed in the following way. T (t) consists
of the individuals who are the best in each generation. Even when the number
of T (t) is less than the particular size, the new individuals are not added. When
the size of T (t) is exceeded, the worst individual is eliminated one by one. By
this operation, the arbitrary number of the individuals can be used for the in-
formation of PCA. This is independent from the number of the subpopulation.
T (t) also exists in each island.

2.4 PCA Transformation

The average of T (t) is subtracted from T (t) and T (t) becomes matrix T (nT (t)column×
Dline). The average of T (t) is also subtracted from S(t) and S(t) becomes X
(nS(t)column× Dline). Then, the covariance matrix S of T is derived and the
eigen values and vectors are obtained. S is a real symmetric matrix and derived
as follows,

S =
1

nS(t) − 1
T T T . (1)

The eigen vector indicates the axis of the new space.
Using the derived eigen vectors, the design variables X of the solution set

S(t) are transferred. After the transfer into the new space, there is no correla-
tion among the design variables. The coordinate transfer matrix consists of the
vectors V = [v1, v2, . . . , vD]. After multiplying V , the vector X becomes Y .
The coordinate of Y corresponds to the eigen vectors.

2.5 Generation of New Individuals

The new individuals are generated using the normal distribution of the informa-
tion of Y . Each value of the design variable in a new individual is also determined
one by one independently. Therefore, when there are n design variables in an
individual, there should be n different normal distributions. The normal distri-
bution is formed as follows; the average is the same as the average value of the
target design value of Y . The distribution is derived by multiplying the distribu-
tion of Y by the parameter Amp. The values of design variables are determined
randomly, but the total distribution of the new individuals should be the same
as the formed normal distribution. The number of the created new individuals
is the same as the number of individuals in an island (nP (t)) and the generated
individuals are stored in Y offs.

2.6 Restoring Correlation and Substitution of Old Individuals with
New Individuals

Y is the transferred set of X into the new space. In this step, the derived Y offs

is then substituted into the original space.
Y offs is multiplied by the inverse of V . After this operation, the set of Y offs

is in the original space.



Xoffs = Y offs · V −1 (2)

The average of Xoffs is added to the new individuals. These new individuals
are substitute for the old ones P (t) and those become P (t + 1).

2.7 Mutation

The values of the design variables are changed randomly within the constraints
using the mutation ratio Rmu.

2.8 Preservation and Recovering of Elite Individuals

The elite individuals are preserved as E(t). The number of the preserved indi-
viduals is nE(t). After the substitution of the new individuals generated from
the probabilistic model, the elite individuals are recovered in the total popula-
tion. In this case, the elite individuals E(t) are substituted with the individuals
P (t + 1) whose evaluation values are not good.

3 Test Functions and Used Parameters for Numerical
Experiments

In the following sections, the search capability and the characteristics of the
DPMBGA are discussed. These discussions are illustrated through numerical
experiments. In this section, the test functions and parameters for these experi-
ments are explained.

The DPMBGA is used to find optimum solutions of the following five test
functions: the Rastrigin function, Schwefel function, Rosenbrock function, Ridge
function, and Griewank function. All of test functions are minimization prob-
lems. The global optimums are located at O. There are 10 dimensions of the
design variables in the Schwefel function and 20 dimensions of the design vari-
ables in the rest of the functions.

There is no correlation between the design variables in the Rastrigin function
and the Schwefel function. There are many sub-peaks in the landscape of these
functions. On the other hand, there is a correlation between the design variables
in the Rosenbrock function and the Ridge function. In these test functions, there
is only a peak in a landscape. In the Griewank function, there is a correlation
between the design variables and many peaks in the landscape.

FRastrigin = 10n +
n∑

i=1

(
x2

i − 10 cos(2πxi)
)

(3)

(−5.12 ≤ xi < 5.12)



FSchwefel =
n∑

i=1

−xi sin
(√

|xi|
)
− C (4)

(C : optimum.)
(−512 ≤ xi < 512)

FRosenbrock =
n∑

i=2

(
100(x1 − x2

i )
2 + (1 − xi)2

)
(5)

(−2.048 ≤ xi < 2.048)

FRidge =
n∑

i=1

( i∑
j=1

xj

)2

(6)

(−64 ≤ xi < 64)

FGriewank = 1 +
n∑

i=1

x2
i

4000
−

n∏
i=1

(
cos

( xi√
i

))
(7)

(−512 ≤ xi < 512)

The parameters used in these experiments are summarized in Table 1.

Table 1. Parameters

Population size 512
Number of elites 1
Number of islands 32
Migration rate 0.0625
Migration interval 5
Archive size for PCA 100
Sampling rate 0.25
Amp. of Variance 2
Mutation rate 0.1/ (Dim. of function)

4 Discussion on Effectiveness of PCA and Distributed
Environment Scheme

In the DPMBGA, the new individuals are generated using the PCA. By this
operation, the information from the correlation among the design variables that
is found during the search is reflected to the new individuals. In the problems
where there is a correlation among the design variables, the distribution of the



value of each design variable is not independent from each other. Therefore,
the distribution of each design variable is affected by the distribution of the
other design variables. In the new model, at first, the set of the individuals
is transferred into the space where there is no correlation among the design
variables. After this transformation, it is easy to generate new individuals using
their information of the distribution. Therefore, it is expected that the DPMBGA
can perform an effective search in the problems where there is a strong correlation
among the design variables. In the numerical experiments, the following three
models are discussed.

model 1 : In every island, the PCA is performed.
model 2 : In every island, the PCA is not performed.
model 3 : In half of the islands, the PCA is performed.

In these models, the number of the islands where the PCA is performed is dif-
ferent. The model 1 is the same model explained in section 2. In model 2, the
PCA is not performed at all. In model 3, the distributed environment scheme is
applied for using the PCA.

The Distributed Environment GA (DEGA) is one of the distributed GA
schemes that Miki et al. proposed[11]. In the DEGA, the different parameters or
the different operations are performed in each island. It is well known that the
search capability of GA depends on the value of the parameters. The optimum
values of these parameters also depend on the targeted problems. Therefore,
preliminary experiments are necessary in order to derive the optimum values of
the parameters. In the DEGA, the values of the parameters and the operations
are different in each island. These parameter values are not the best but can
derive adequate solutions. In this paper, the DEGA scheme is applied; the CPA
is performed in some islands and not in other islands.

In Table 2, the number of the trials where the optimum value is derived
is summarized in using 20 trials. The higher number means that the robust
search has been performed. In Figure 2, the average number of the evaluations
is illustrated when the simulation derives the optimum values. The model that
has the smaller number of this value may be the better model.

Table 2. Number of times that the threshold is reached

model 1 model 2 model 3

Rastrigin 0 20 20

Schwefel 20 20 20

Rosenbrock 20 0 20

Ridge 20 20 20

Griewank 19 17 20

In the Schwefel function, all the models derive the optimum solutions in
every trial with the small number of the evaluations. In the Rastrigin function,
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Fig. 2. Comparison of search capability between models

the search ability of model 1 is worse than the other models. That means the
PCA does not help for achieving a good solution. In the Rosenbrock function
that has the correlation relationship among the design variables, model 2 (where
the PCA is not performed) cannot derive the optimum solutions. In the Ridge
function that also has the correlation, model 2 can derive the optimum solutions
but needs many evaluations compared to the other models. These results suggest
that the PCA should have a positive effect on the search in these problems.

From these results, the following point is made clearer; the PCA is useful
for the problems that have the correlation among the design variables but not
useful for the problems that do not have the correlation. Therefore, the effect
of the PCA depends on the type of the problems. On the other hand, model
3 where the PCA operations are performed in some islands but not in others
is good at finding optimum solutions in every function. The Griewank function
has the correlation among the design variables and has also many peaks in the
landscape. Therefore, it is a difficult problem to find the optimum. Model 1 and
2 did not find the optimum solutions in some trials. On the other hand, model
3 derived the optimum in all the trials. From these results, there is a possibility
that model 3 can find the optimum solutions not only in the problems whether
the correlation of the design variables exists or not but also in the problems where
there are many peaks in the landscape. Because of the result in this section, in
the following discussions, model 3 is used.

5 Comparison of DPMBGA with UNDX + MGG

In this section, the search capability of the DPMBGA is compared with the
conventional real-coded GA. The comparison real-coded GA is UNDX[4] with
Minimal Generation Gap (MGG)[12, 13]. In the UNDX, two new individuals
are generated from three individuals. Two of the parent individuals form the
main axis with the normal distribution generated on this main axis. The third
parent determines the variance of the normal distribution. The child individuals
are generated in accordance with this normal distribution. Using the UNDX,



an effective search can be performed with the consideration of the correlation
between the design variables.

MGG is one of generation alternation models. When the generation alter-
nation occurs in the MGG, the following procedure is performed. Two of the
parent individuals are chosen from the population randomly from which child
individuals are generated by the crossover with the parent one time or many
times. From the set of the child and parent individuals, the individuals that re-
main as the next generation are selected. These individuals are then substituted
for the parent individuals and are backed to the total population. The MGG has
the characteristics to maintain the diversity of the solutions during the search
since the selection is limited to the small number of solutions.

In Figure 3, the transitions of the DPMBGA search and the UNDX+MGG
model are shown. The horizontal axis shows the number of evaluations and the
vertical axis shows the average fitness values in 20 trials. In the UNDX+MGG
model, some of 20 trials did not get the optimum solution. The average values
of the trials where the optimum solutions are derived are illustrated. These are
minimization problems with smaller fitness values indicating the better solutions.

For the parameters of UNDX+MGG, there are 300 individuals for the func-
tions with many peaks and there are 50 individuals for the functions with only
one peak. The number of crossover is 100 and α = 0.5. β = 0.35 is used.
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Fig. 3. History of average of evaluation values

Figure 3 indicates that the results of the DPMBGA are better than the other
models in the problems whether a correlation relationship between the design



variables exists or not. Therefore, it can be concluded that the DPMBGA is a
useful GA for these continuous functions.

6 Discussion on Case where PCA does not Work
Effectively

In the former section, it is found that the PCA operation sometimes prevents the
effective finding of the optimum. In the Rastrigin function, the model without
the PCA operation derived better solutions than the model with the PCA. In this
section, the reasoning for why the PCA does not work effectively is discussed.

One reason may be the early convergence of the solutions in the archive. The
PCA uses the information from the solutions in the archive and it is important for
the effective search that this archived information should reflect the information
of the real landscape of the problem. If these solutions in the archive are not
renewed, the proper transfer by the PCA cannot be expected to occur. Since the
Rastrigin function has many sub-peaks on the landscape, it may be that many
solutions are stuck in the sub-peaks. Then, the solutions of the archive are not
renewed possibly preventing an effective search.

This assumption is illustrated with numerical experiments. In these experi-
ments, the model where the PCA operation is performed in all the sub-populations
is used. The target test functions are the Rastrigin function and the Rosenbrock
function.

In Figure 4, the history for the renewal of the archive is shown. The horizontal
axis shows the number of the evaluations and the vertical axis shows the number
of the renewed individuals. From this figure, it is obvious that the number of the
renewed individuals becomes small, especially in the latter part of the search in
the Rastrigin function.

Fig. 4. History of number of updated individuals in archive of the best individuals

Conversely, in the Rosenbrock function, the number of the renewed individ-
uals does not decrease and most of the individuals of the archive are always
renewed.



In Figure 5, the history of the search is illustrated. The horizontal axis shows
the number of evaluations and the vertical axis shows the average value of the
evaluation in 20 trials. This is the minimizing problem; the smaller evaluation
value indicates the better solution. The term ”normal” in this figure indicates
the result of the normal model. ”erase/10” indicates the result of the model
where the archive of the individuals is eliminated every 10 generations.

Fig. 5. History of average of evaluation values in the model in which archive is erased
each 10 generation

From this figure, the result of the ”erase/10” model is better than the normal
model in the Rastrigin function. On the other hand, the result of the ”normal”
model is better than the ”erase/10” in the Rosenbrock function. These results
point out that the archive effect is worse in the Rastrigin function.

In conclusion, one of the reasons that the PCA operation prevents an effective
search in the Rastrigin function is stagnation of the renewal of the individuals
in the archive.

7 Discussion on Search Capability of DPMBGA for
Functions Whose Optimum is Located Near the
Boundary

When a normal distribution is used in the crossover operation, it is often said
that the real-coded GA is good at finding the solution in the problem where the
optimum is located at the center of the search area but is not good at finding
the solution in the problem where the optimum is located at the boundaries [14].

One solution to this problem is Boundary Extension by Mirroring (BEM) [15].
In the BEM, the solutions that violate the constraints can exist when these
solutions are within certain distance. The distance is determined by the extension
rate re (0.0 < re < 1.0).

The DPMBGA is one of the real-coded GAs that may be weak at finding the
solutions in the problems where the optimum is located in the boundary. At the



same time, when the optimum is located on the boundary, the probabilistic model
may be different from the real distribution of the individuals. This situation may
prevent an effective search. The search capability of the DPMBGA for problems
where the optimum solutions is located near the boundary is discussed in this
section. The search capability of the DPMBGA is compared with the model
using the BEM.

The test functions are modified to have their optimum solutions near their
boundaries. The ranges of the functions are summarized in Table 3.

Table 3. Domain of objective functions

Function Optimal solution Domain

Rastrigin 0.0 [0 , 5.12]

Schwefel 420.968746 [-512, 421]

Rosenbrock 1.0 [-2.048, 1]

Ridge 0.0 [0, 64]

In Figure 6, the transition of the search is expressed. The horizontal axis
shows the number evaluations and the vertical axis shows the average of the
fitness values for 20 trials.

These figures illustrate that the proposed model where BEM is not used
derives better solutions. In the proposed model, the individuals who are out of
the feasible region are pulled back on the closest boundary of the feasible region.
The search concentrates on the individual with a good evaluation value by the
DPMBGA. When the optimum solution is on or near the boundary, the search is
concentrated near the boundary. This may be a reason why the proposed model
is better than the model using the BEM. Thus, the DPMBGA derives the good
solution for the type of problems with constraints that are the upper and lower
boundaries of the design variables.

8 Conclusions

In the DPMBGA, the correlation among the design variables is analyzed by
PCA. The new individuals are generated from the probabilistic model that is
formed with the individuals that have good fitness values. However, before gen-
eration, the individuals that are used for forming the probabilistic model are
transferred by PCA into the space where there is no correlation among the de-
sign variables. Then the new individuals are generated and these are placed into
the original space. From this operation, the generated new individuals may have
the correlation among the design variables. Therefore, an effective search may
be expected. At the same time, the island model is utilized for maintaining the
diversity of the solutions during the search.
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Fig. 6. History of the average of evaluation values on functions with an optimum at
the edge of search space

The DPMBGA is applied to find the optimum solutions of the test func-
tions. Through these numerical experiments, the following four topics are made
clarified.

Firstly, the DPMBGA with PCA operations is useful for finding the solutions
in the test functions where there is a correlation relationship among the design
variables. On the other hand, the PMBGA without PCA is good at finding the
optimum in the functions where there is no correlation relationship among the
design variables. From these results, the new model of PMBGA that is based
on the distributed environment scheme where PCA is performed in only half
of the subpopulations is proposed. The DPMBGA is very useful for finding
the optimum in the functions whether or not there is a correlation relationship
among the design variables or not.

Secondly, the results of the DPMBGA are compared to those of UNDX with
MGG. This comparison shows that the DPMBGA has higher search capability.

In the DPMBGA, the Principle Component Analysis is used to analyze the
correlation between the design variables. However, the PCA does not work effec-
tively for finding the optimum solutions in some test functions. The reason for
this problem is the third discussion. Numerical experiments conclude that one
of the reasons the PCA operation prevents the effective search in the function
is stagnation of the renewal of the individuals.

Finally, the DPMBGA is used to find the solutions in the functions where the
optimums are located at the edge of the feasible region. In the DPMBGA, when
the new individuals violate the constraints, the solutions are pulled back on the
boundary. This operation is compared with the BEM. Numerical experiments



illustrate that the operation in the proposed method is better than BEM in these
test functions.
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