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L Abstract- In this paper, a new distributed
genetic algorithm for multiobjective optimiza-
tion problems is proposed. In this approach,
the island model is used with a distributed ge-
netic algorithm and an operation of sharing for
Pareto-optimum solutions is performed with the
total population. In multiobjective optimization
problems, the Pareto-optimum solutions should
be derived for designers. Because the Pareto-
optimum solutions are the set of optimum solu-
tions that are in the relationship of trade-off, not
only the accuracy but also the diversity of the
solutions should be high. The effect of the dis-
tributed populations leads to the high accuracy
and the sharing effect leads to the high diver-
sity of solutions. These effects are examined and
discussed through some numerical examples that
have more than three objective functions.

1 Introduction

In real world problems, there are usually multiple objec-
tive functions that are in the relationship of trade-off.
Those optimization problems are called multiobjective
optimization problems. In portfolio problems, for exam-
ple, when the safety increases, the return decreases. On
the other hand, when the return increases, the safety de-
creases. In this case, the safety and return are objective
functions and those are in the relationship of trade-off.
The genetic algorithm is one of the most powerful op-
timization methods based on the mechanics of natural
evolution (gold89). This algorithm can be used in the
discrete design field and it is said that this algorithm
can find the global optimum even when there are several
local optima. Therefore genetic algorithms are very use-
ful, but there are some problems. One of the problems
is the necessity of the huge number of iterations. Hence,
to solve practical problems by genetic algorithms, ge-
netic algorithms should be speeded up somehow. One
of the solutions is the parallelization of genetic algo-
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rithms. There are also several ways to perform genetic
algorithms in parallel, but one of the ways is so called
the distributed genetic algorithms. In the distributed
genetic algorithms, the entire population is divided into
small groups which is called sub populations or islands.
It is reported that distributed genetic algorithms have
some advantages compared to genetic algorithms with
single populations (miki98).

This distributed genetic algorithms can also be ex-
pand to solve multiobjective optimization problems.
There are some researches that are focused on the ge-
netic algorithms in multiobjective optimization problems
(haje92, fons93, fons95). On the other hand, there are
very few researches focused on the distributed genetic
algorithms in multiobjective optimization problems. Es-
pecially, the efficiency of the sharing which is an oper-
ation that should be performed to keep the diversity of
the solutions in genetic algorithms for multiobjective op-
timization problems is not well discussed.

In this study, a distributed genetic algorithm is ex-
amined in multiobjective optimization problems. Espe-
cially, a new model of distributed genetic algorithms is
proposed. In this model, the operation of sharing is used
for not only the population of the island but also for
the entire population. To examine the effects of distri-
bution and sharing, this algorithm is implemented with
one processor. The effectiveness of the proposed method
is discussed through the numerical examples that have
more than three objective functions.

2 Genetic Algorithms in Multiobjective
Optimization

Problems that have some multiple objective functions
can be called multiobjective optimization problems
(MOPs). In MOPs, to derive Pareto-optimal solutions
(fons95) is one of the goals. Pareto-optimal solutions
are the set of optimum solutions that are in the rela-
tionship of trade-off. There exist several algorithms that
find Pareto-optimal solutions. Genetic algorithms (GA)
is one of those methods.

There are some studies concerned with genetic algo-



rithms in multiobjective optimization problems. Fonseca
and Fleming reviewed evolutionary algorithms in multi-
objective optimization (bent80) and they also well sum-
marized the studies on genetic algorithms in multiobjec-
tive optimization problems (fons98). In single-objective
optimization problems, there is only one optimum point
and GAs have disadvantages compared to classical opti-
mization algorithms with respect to the number of itera-
tions because GAs are multi-point searching algorithms.
On the other hand, in MOPs, the solutions are set of
multi-points and it can be said that GAs are suitable for
MOPs.

At first, in GAs for MOPs, population is scattered in
the design field or the objective field like Figure 1. Par-
ents are selected to generate children. New population
is selected somehow and the frontier moves toward the
Pareto-optimum solutions.

F1

Frontier
Pareto-optimum

F2
Figure 1: Pareto-optimum solutions

The GAs for MOPs roughly divided into two cate-
gories from the selection point of view. Those are the
non-Pareto ranking selection and the Pareto ranking se-
lection, respectively.

Schaffer proposed the vector evaluated genetic algo-
rithm (VEGA) in MOPs (scha85). He is probably the
first to expand GAs in MOP. In VEGA, the population
is divided into sub-populations. In each sub-population,
only one objective function is evaluated and the children
are selected according to this objective function. This
algorithm is very easy to apply in parallel. However, the
solutions tend to concentrate on one point where one
of the values of the objective functions is high but oth-
ers are very low. The fact that the Pareto optimality is
not treated explicitly in VEGA leads that uniformly dis-
tributed Pareto-optimum solutions can not be obtained.

Pareto ranking selection is treated the Pareto opti-
mality of solutions explicitly. Goldberg is determined the
ranking as follows (gold89). At first, all population is set
their ranking r=1. Secondly, Pareto-optimum solutions
are chosen from the population and these are removed
from the population. Then, the ranking is renumbered
r=r+1. This routine is continued until the rankings of
all population are fixed.

Usually, these rankings are used as the fitness func-
tion for a selection such as the roulette selection. There
are several types of fitness functions based on the Pareto
ranking. Fonseca proposed the fitness functions that
consist of not only rankings but of also the number of
subordinated populations (fons93). Horn is proposed the
way to construct the fitness functions with these rank-
ings and sharing explained in the next section. In this
study, only rank-1 populations are chosen and all rank-
1 populations remain in the next generation. It takes
much time when the population whose rank is not 1 are
considered. Since crossover is performed in the design
variable fields, the diversity is maintained adequately.
This is a kind of elite selection of GAs in single-objective
optimization problems.

In a simple genetic algorithm, the size of population is
fixed. In multiobjective genetic algorithms, the number
of populations increases with the generations since the
frontier also expands with the generations. To prevent
the explosion of the number of solutions, the sharing
techniques should be introduced in this approach.

For designers, it is not useful when the Pareto-
optimum solutions are concentrated on one point.
Therefore, the Pareto-optimum solutions that have high
diversity should be obtained. The sharing (horn94) is
the operation to scatter the solutions over the Pareto-
optimum solution set.

Usually, the sharing function s(d) is defined with the
distance d(z;, ;) between two individuals i and j as fol-
lows,

s(d) = maz {o, - Usjm } . (1)

Where 04p4re is the parameter to share the solutions
and called a sharing radius. Then the values of the fitness
function is changed with the sharing function.

In this study, the sharing does not change the fitness
function but reduces the size of population directly, like
Figure 2. Therefore, only one population remains within
the sharing radius.

o remained population
o discared population

&I
F1 "".’

Figure 2: Schematic of sharing (2 objectives)
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Figure 3: Distributed genetic algorithms with sharing

Because GAs have intrinsic parallelism (gold89), it is
easy to perform GAs in parallel. The ways of paralliza-
tion of genetic algorithms is roughly divided into two
ways. One of them is to parallelize evaluations and the
other is to parallelize population. In the way of paral-
lelization of population, the population is divided into
small groups that are called islands and this approach
is called distributed genetic algorithms (DGAs). A ge-
netic algorithm is carried out in each island separately.
After some generations, some individuals in each island
are chosen and sent to another island. This operation is
called migration. The migration interval is a parameter
in DGAs. The number of individuals that migrate to
another islands is another parameter that is called a mi-
gration rate. There are a lot of studies concerned with
distributed genetic algorithms. It was made clear that
DGASs can find the optimum with small population size
and short calculation times (tane89, star91, muhl91).

DGAs can be easily expanded to the application in
MOPs. In this case, DGAs are also roughly divided into
two approaches. Those are the VEGA approach and the
island model approach. In the island model approach,
the population is divided into sub-populations which are
called islands. In the islands, ranking or non ranking
selections are performed. After a certain generations,
some individuals are chosen and are migrated to another
islands.

There are few studies concerned with DGAs in MOPs.
Hiyane examined the DGAs in MOPs and concluded
that DGAs are powerful algorithms under parallel com-
putations (hiya97). However, the diversity of solutions
becomes low since the population size becomes small
compared to GAs with a single population. Therefore,
the sharing should be carried out for the total popula-
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tion to increase the diversity. A DGA with the sharing
to the total population is the base idea of the proposed
approach explained in the following chapter.

3 Distributed Genetic Algorithms with
Sharing

In this study, a new approach of distributed genetic al-
gorithms in multiobjective optimization problems is pro-
posed. In this approach, the island model is taken for a
distributed genetic algorithm and a sharing is performed
when the number of the frontier solutions exceed the cer-
tain size. The concept is shown in Figure 3 and the flow
of the algorithm is shown in Figure 4.

In distributed genetic algorithms in multiobjective
optimization problems, the size of sub-population is
smaller than that of canonical genetic algorithms.
Therefore, the sharing does not take much time com-
pared to the single island. This leads that objective
functions can be called more. On the other hand, the
diversity of the solutions are getting smaller. To increase
the diversity, the sharing for the total population is nec-
essary. The proposed algorithm is the combination of
the advantages of distributed genetic algorithms and the
sharing for the total population. At first, the total pop-
ulation is divided into several islands. Then, a simple
genetic algorithm is performed in each island. After cer-
tain generations, the migration is carried out. During
the distributed genetic algorithm, the size of the frontier
solutions are increasing. When their size exceeds a cri-
terion, the sharing is performed in the total populations.
And again, the total population is divided into several
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while convergence conditiotio
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end

(migration)
if migration conditiorthen
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migration
end
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if sharing conditiorthen
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sharing
divide population into islands
end

end
end

Figure 4: Flow of distributed genetic algorithms with
sharing

islands. This routine is continued until the convergence
condition is satisfied. In this algorithm, the sharing in
each island is not performed usually, but when it takes a
lot of time to share the solutions in the total population,
the sharing is also performed in each island.

It is supposed that the proposed algorithm has the
following four advantages. At first, with this algorithm,
an efficient sharing can be performed. Therefore, the so-
lutions have high diversity. Secondly, when the sharing is
performed only in each island, the size of sub-population
is unbalanced in each island. This algorithm can cor-
rect the sizes of sub-populations. This means that load
balance in parallel computing can be performed auto-
matically. Thirdly, there is a possibility to remove the
operation of migration. In this study, migration is per-
formed. However, it is supposed that the division of the
total population into multiple islands has also the effect
of migration. Finally, the setting of the sharing param-
eter in the entire design space is much easier than that
of the sharing in islands since it is difficult to grasp the
number of frontier solutions in each island.

The proposed algorithms is examined and discussed
with numerical examples in the following chapters.
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4 Numerical Examples

4.1 Function Problems

To examine the performance of the proposed approach,

the following simple MOP is solved and the Pareto-

optimum solutions are derived in the next section.
Objective functions

fi = -z (i=12,...,n) (2)
Constraints

g = —x; (j=12,...,n) (3)

gn+k = T —6 (k=1,2,...,n) (4)

9ont+1 = 1—1’1'Z‘2'...Z’n (5)

This MOP is very simple, but it is easy to expand to
arbitrary N-dimension problems. In most previous stud-
ies there are only two objective functions. The MOP
that has two objective functions is easy to demonstrate
because it is easy to represent the Pareto-optimum so-
lutions. Hence, it is easy to grasp the effect of the al-
gorithms. However, the MOP which have more than
4 objective functions have another problems compared
to the MOP which have only two objective functions.
Those are the problems of the population size that needs
to express the Pareto solutions and the problem of the
difficulty of the sharing. Therefore, even when the algo-
rithms that lead good solutions in the problem that has
two objective functions, it sometimes happens that the
algorithms do not work for the problems that has more
than three objective functions. Because of this, it is nec-
essary to test and discussed the algorithm in the MOP
where there are more than three objective functions.

On the other hand, it is very difficult to grasp the
Pareto-optimum solutions where there are more than 4
objective functions in MOPs because it is impossible to
draw all of the Pareto-solutions at once. It is another
problems to overcome and this is the future challenge of
the MOPs.

As it is mentioned before, to examine the effect of the
algorithms, the real Pareto-optimum solutions should be
known. In this numerical example, it is very easy to find
the real Pareto-optimum solutions and it is also easy to
get the high accuracy of the solutions. In Figure 5, the
Pareto-optimum solutions are shown in case of two and
three objective functions, respectively.

4.2 Genetic Algorithm in Each Island

In this study, genetic operators are performed in each
island. Those are crossover and selection. In this com-
putation, the mutation is not performed and crossover
rate is 1. Because this MOP is in real value space, the
real value vectors are used as coding instead of binary
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Figure 5: Pareto-optimum solutions (2 and 3 objectives)

coding. Because of this coding, conventional crossover
operations can not be used. Here the normal distribu-
tion crossover is used as follows. When there are n design
variables, n+1 points are selected probabilistically. The
center of gravity G of n+1 points is derived. Then the
child is derived the following equation.

N
T =T+ N(@,0?)GF; (6)

Example of the crossover where there are two objec-
tives are shown in Figure 6.

Normal
Distribution

Figure 6: Normal distribution crossover

When a new child break the constraints, another child
is derived using the following equation and shown in Fig-
ure 7.

——

CneW = IT1>

=
+ OéPl Cl (7)

In this equation, « is reduced until the child satisfies
constraints. Only rank 1 solutions of the frontier solu-
tions are chosen when the selections. The size of frontier

solutions is not limited in this numerical examples.

4.3 Evaluation methods of algorithms in multiob-
jective optimization problems

In this study, the algorithms are evaluated from the fol-
lowing 4 points of view. Those are the number of solu-
tions, error, cover rate, and coefficient of variation.
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Feasible regio

Figure 7: Generation of child satisfies the constraints

The number of solutions
It is said that the size of population is one of most impor-
tant index for the performance of algorithms in MOPs.
Especially, the size of population of rank 1 is very im-
portant. If the algorithms can not find enough number
of rank 1 solutions, designers can not grasp the rela-
tionship between the objective functions. In that case,
it can be said that the algorithm cannot produce good
solutions. On the other hand, an extra population in-
creases the computational cost. Therefore, there should
be enough number of solutions that have enough accu-
racy and enough cover rate.

Error
When the real Pareto-optimum solutions are known, the
accuracy of the solutions is one of the important index
for the Pareto optimum solutions. The error of solutions
E can be derived as follows

where d is the distance from solution to the real Pareto-
optimum solutions. It is obvious that the real Pareto-
optimum solution should be known to derive the accu-
racy. Therefore it is rather difficult to use this as the
index in real-world problems.

Cover rate of solutions
The index of error is not enough for evaluating the
Pareto-optimum solutions of MOPs. For example, if
there is only one Pareto-optimum solution. The accu-
racy is very high but it is not enough to express the
Pareto-optimum solutions.

To support the disadvantage of the accuracy, a cover
rate is proposed in this study. At fist, the maximum and
minimum values of each object function are searched.
The distances between maximum and minimum are di-
vided by a certain number. The number of intervals
where a solution exists is counted. Total number is av-
eraged by the total number of intervals. This average
number becomes the cover rate. When this index is close
to 1, the solutions well cover from the maximum to the
minimum of the Pareto optimum solutions. This is the
only index for finding solutions covered the entire area




or not. Therefore, this index should be used with the
index of error.
Coefficient of variation

Ideally, the Pareto-optimum is shown with the smallest
number of solutions. To find the extra solutions, the co-
efficient of variation is introduced in this study and it
expresses the index of diversity. The coefficient of vari-
ation is derived as follows. At first, one of the solutions
are focused on and the number of population that are in
the certain distance is counted. Other solutions are also
focused and the number of them are counted. Then, the
average of standard deviations of this value becomes the
coefficient of variation of each solution. Therefore, when
the coefficient of variation becomes 1, the solution has
high variety. *

5 Results and Discussions

In this study, the problem that is explained in sub section
4.1. This problem has 4 objective functions is solved. All
results are the average of 10 trials. Migration is operated
every other generation and 10% of each population of the
island migrates to the other island randomly. These pa-
rameters affect to the solutions and the discussion about
it is the future topics.

The proposed algorithm that is explained in section
3 can be performed on a parallel computer. However, to
make the characteristics of the effects of the algorithm
clearly, every numerical example is performed on a single
CPU computer.

5.1 Distributed Effect

In Table 1, the results of distributed the genetic algo-
rithm (DGA, island model) and the canonical genetic
algorithm (CGA, 1 island) is shown. In the both cases,
total initial population size is 1000, and the calculation is
terminated when the evaluation function is called more
than 1000 times. In the CGA, the population size is re-
duced about 80 by sharing when the size exceeds 2500.
In the DGA, there are 10 islands and the sharing is per-
formed only in the islands. This means that the sharing
is not performed to total population in DGA. The pop-
ulation size of each island is reduced by about 50 by the
sharing when the size exceeds 250.

Table 1: Effect of distribution

coefficient

Z%Tj%%rng error crg}[/igr of generation ;C%L%Lg?g]on
variation
lisland 1980 0.191 | 0.856 2.46 6 194.9
10 island 2690 0.196 | 0.853| 3.10 6 34.3

From this results, it is obvious that it takes much time
in the CGA compared to the DGA. In the DGA, the size
of population in island is not so big and it does not take
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much time in the sharing operation. On the other hand,
the error and the cover ratio are almost the same. There-
fore, when the calculation time is termination condition,
the accuracy or the cover rate will increase in the DGA.
On the other hand, diversity(coefficient of variation) is
not so good in the DGA because each island has each
frontier solutions and there exist the overlapped solu-
tions.

5.2 Distributed Genetic Algorithm with sharing

It is clarified that the DGA derives the solutions that
have high accuracy and high cover rate, but low diver-
sity. When the diversity is low, it means that the solu-
tions are gathered near one point. In MOPs, not only
the accuracy of the solutions but also the high diversity
is also important. The proposed algorithm shown in sec-
tion 3 is one of the solutions to find the Pareto-optimum
solutions that have high diversity.

In the numerical examples, the sharing reduces the
total population size into 80 from 2500.

In Tables 2 and 3, the results of the proposed algo-
rithm are shown. The results in Table 2 are derived
when the calculation is terminated after 2000 times of
the objective function call. The results in Table 3 are
also derived when the calculation is terminated after a
certain calculation time.

From Table 2, it can be seen that the DGA with shar-
ing can find solutions that have high accuracy, high cover
rate, and high diversity. The sharing performed in the
proposed algorithm worked well to find good solutions.
On the other hand, this sharing takes a lot of time. Table
3 points that the DGA with the sharing iterates only 3
generations. Therefore, it can be said that this solutions
are not evolved well.

From these results, the DGA with the sharing can de-
rive good solutions. Therefore, it has an advantage for
the problems where it takes a lot of time to evaluate the
objective function, such as structural optimization prob-
lems. However it has a disadvantage that the calculation
time is very short.

Table 2: DGA and DGA with the sharing (termination
condition = number of function call)

coefficient

number o cover . |calculation
- error / of generations” &
solutions| ratio variation time [s]
DGA| 3888 0.171 (0.855( 4.11 8.7 91.0
DGA with
sharing 3079 0.153 [0.855 3.10 10.1 563.1

To make clear the advantage of the DGA with the
sharing when the calculation time of the function evalu-
ation is not short, function sleeps 0.001[s], 0.01[s], 0.05[s],
or 0.1[s] when the function is called. In Figures 8 and
9, the error and cover ratio of solutions that are derived



Table 3: DGA and DGA with the sharing (termination
condition = calculation time)

coefficien . |number of
ﬂﬂﬁﬂwﬂdmﬂmzoﬂ oqmmmq of  |generationsfunction
variation call
DGA| 3422 (0.182(0.856| 3.65 7.8 18998
DGA with
sharing 1581 [0.226 (0.847| 2.15 3.0 4985

by by the DGA and the DGA with the sharing are ex-
pressed when the sleep time of the function is changed
respectively.

0.12
0.11
0.1
0.09
S 0.08
w
0.07 4
" n DGA
0.06 4, ) .
* DGA with sharing
0.05 _ﬂ T T T T
0.000 0.025 0.050 0.075 0.100 0.125
Sleep time
Figure 8: Error
0.950
[} DGA
0.925] . DGA with sharing
el
s .
— 0.900m
[3) :
o :
[e]
o
0.8754
0.850 = .
0.000 0.025 0.050 0.075 0.100 0.125
Sleep time

Figure 9: Cover ratio

From Figures 8 and 9, it is clarified that when the
sleep time of the function is long, the quality of the
Pareto-solutions that are derived by the DGA with the
sharing are better than those derived by the DGA. The
cover ratio of the DGA with the sharing is always bet-
ter than that of the DGA. This result means that the
proposed approach is useful when it takes much time to
evaluate objective functions such as in structural design
problems.
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5.3 Sharing in both sub-population and total
population

The proposed distributed genetic algorithm with the
sharing takes a lot of time because of the sharing with to-
tal population when the calculation time of the objective
functions is very short. To shorten the total calculation
time, the sharing should be performed not only with the
total population, but also in each island. In this case, the
status in the islands are different, the sizes of the pop-
ulation of the islands are different each other. In this
section, this type of sharing is called the hybrid sharing.

The results are shown in Table 4. In the hybrid shar-
ing algorithm, the calculation time is shorter than that
of DGA with the sharing. The diversity(coefficient of
variation) is also made progress and this result shows
the good effect of the sharing both in each island and
with the total population. On the other hand, the ac-
curacy of the solutions is not so good. This comes from
the lack of the number of the solutions. Therefore, the
parameter of sharing should be tuned up.

Table 4: DGA, DGA with sharing and Hybrid sharing

coefficient i lculati
Hﬂﬁﬂmﬂam* error meW of @m:mqmzo:wowmmmmm_%:
variation
DGA 3888 0.171(0.855] 4.11 8.7 91.0
wﬁw&% 3079 | 0.153|0.855| 3.10 10.1 563.1
mz_«whw@ 2022 | 0.183| 0.858 243 10.0 275.5

6 Conclusions

1. In this paper, a new method of distributed genetic
algorithms for multiobjective optimization prob-
lems is proposed.

2. Indexes that can evaluate the performance of algo-
rithms are introduced. Those are population size,
error, cover rate, and coefficient of variation. These
indexes can be applied to the problems that have
more than three objectives.

A numerical example is shown to express the
effectiveness of the proposed method. Conven-
tionally, the multiobjective optimization problems
with only two objectives. This example introduced
here can be extended to arbitrary number of di-
mensions in the design space. At the same time,
the accurate Pareto-optimum solutions can be de-
rived easily.

In the proposed approach, the distributed genetic
algorithm is performed with some sub-populations.
When the frontier solutions exceed the criterion



number, the sharing is performed with the to-
tal population that is constructed from the sub-
populations.

5. The proposed approach is verified by the numerical
examples. It is clarified that the sharing with the
total population increases the diversity and the ac-
curacy of the solutions. This approach takes some
time in the sharing, but this approach becomes use-
ful when it takes much time to evaluate objective
functions.

6. The algorithm where the sharing is performed in
islands and in total population is also performed.
This approach reduces the calculation time and
makes some increase in the diversity, while the ac-
curacy of the solutions is decreased.
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