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1 Abstract- In this paper, a new distributed

genetic algorithm for multiobjective optimiza-

tion problems is proposed. In this approach,

the island model is used with a distributed ge-

netic algorithm and an operation of sharing for

Pareto-optimum solutions is performed with the

total population. In multiobjective optimization

problems, the Pareto-optimum solutions should

be derived for designers. Because the Pareto-

optimum solutions are the set of optimum solu-

tions that are in the relationship of trade-o�, not

only the accuracy but also the diversity of the

solutions should be high. The e�ect of the dis-

tributed populations leads to the high accuracy

and the sharing e�ect leads to the high diver-

sity of solutions. These e�ects are examined and

discussed through some numerical examples that

have more than three objective functions.

1 Introduction

In real world problems, there are usually multiple objec-

tive functions that are in the relationship of trade-o�.

Those optimization problems are called multiobjective

optimization problems. In portfolio problems, for exam-

ple, when the safety increases, the return decreases. On

the other hand, when the return increases, the safety de-

creases. In this case, the safety and return are objective

functions and those are in the relationship of trade-o�.

The genetic algorithm is one of the most powerful op-

timization methods based on the mechanics of natural

evolution (gold89). This algorithm can be used in the

discrete design �eld and it is said that this algorithm

can �nd the global optimum even when there are several

local optima. Therefore genetic algorithms are very use-

ful, but there are some problems. One of the problems

is the necessity of the huge number of iterations. Hence,

to solve practical problems by genetic algorithms, ge-

netic algorithms should be speeded up somehow. One

of the solutions is the parallelization of genetic algo-
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rithms. There are also several ways to perform genetic

algorithms in parallel, but one of the ways is so called

the distributed genetic algorithms. In the distributed

genetic algorithms, the entire population is divided into

small groups which is called sub populations or islands.

It is reported that distributed genetic algorithms have

some advantages compared to genetic algorithms with

single populations (miki98).

This distributed genetic algorithms can also be ex-

pand to solve multiobjective optimization problems.

There are some researches that are focused on the ge-

netic algorithms in multiobjective optimization problems

(haje92, fons93, fons95). On the other hand, there are

very few researches focused on the distributed genetic

algorithms in multiobjective optimization problems. Es-

pecially, the e�ciency of the sharing which is an oper-

ation that should be performed to keep the diversity of

the solutions in genetic algorithms for multiobjective op-

timization problems is not well discussed.

In this study, a distributed genetic algorithm is ex-

amined in multiobjective optimization problems. Espe-

cially, a new model of distributed genetic algorithms is

proposed. In this model, the operation of sharing is used

for not only the population of the island but also for

the entire population. To examine the e�ects of distri-

bution and sharing, this algorithm is implemented with

one processor. The e�ectiveness of the proposed method

is discussed through the numerical examples that have

more than three objective functions.

2 Genetic Algorithms in Multiobjective

Optimization

Problems that have some multiple objective functions

can be called multiobjective optimization problems

(MOPs). In MOPs, to derive Pareto-optimal solutions

(fons95) is one of the goals. Pareto-optimal solutions

are the set of optimum solutions that are in the rela-

tionship of trade-o�. There exist several algorithms that

�nd Pareto-optimal solutions. Genetic algorithms (GA)

is one of those methods.

There are some studies concerned with genetic algo-
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rithms in multiobjective optimization problems. Fonseca

and Fleming reviewed evolutionary algorithms in multi-

objective optimization (bent80) and they also well sum-

marized the studies on genetic algorithms in multiobjec-

tive optimization problems (fons98). In single-objective

optimization problems, there is only one optimum point

and GAs have disadvantages compared to classical opti-

mization algorithms with respect to the number of itera-

tions because GAs are multi-point searching algorithms.

On the other hand, in MOPs, the solutions are set of

multi-points and it can be said that GAs are suitable for

MOPs.

At �rst, in GAs for MOPs, population is scattered in

the design �eld or the objective �eld like Figure 1. Par-

ents are selected to generate children. New population

is selected somehow and the frontier moves toward the

Pareto-optimum solutions.

Frontier
Pareto-optimum

F1

F2

Figure 1: Pareto-optimum solutions

The GAs for MOPs roughly divided into two cate-

gories from the selection point of view. Those are the

non-Pareto ranking selection and the Pareto ranking se-

lection, respectively.

Scha�er proposed the vector evaluated genetic algo-

rithm (VEGA) in MOPs (scha85). He is probably the

�rst to expand GAs in MOP. In VEGA, the population

is divided into sub-populations. In each sub-population,

only one objective function is evaluated and the children

are selected according to this objective function. This

algorithm is very easy to apply in parallel. However, the

solutions tend to concentrate on one point where one

of the values of the objective functions is high but oth-

ers are very low. The fact that the Pareto optimality is

not treated explicitly in VEGA leads that uniformly dis-

tributed Pareto-optimum solutions can not be obtained.

Pareto ranking selection is treated the Pareto opti-

mality of solutions explicitly. Goldberg is determined the

ranking as follows (gold89). At �rst, all population is set

their ranking r=1. Secondly, Pareto-optimum solutions

are chosen from the population and these are removed

from the population. Then, the ranking is renumbered

r=r+1. This routine is continued until the rankings of

all population are �xed.

Usually, these rankings are used as the �tness func-

tion for a selection such as the roulette selection. There

are several types of �tness functions based on the Pareto

ranking. Fonseca proposed the �tness functions that

consist of not only rankings but of also the number of

subordinated populations (fons93). Horn is proposed the

way to construct the �tness functions with these rank-

ings and sharing explained in the next section. In this

study, only rank-1 populations are chosen and all rank-

1 populations remain in the next generation. It takes

much time when the population whose rank is not 1 are

considered. Since crossover is performed in the design

variable �elds, the diversity is maintained adequately.

This is a kind of elite selection of GAs in single-objective

optimization problems.

In a simple genetic algorithm, the size of population is

�xed. In multiobjective genetic algorithms, the number

of populations increases with the generations since the

frontier also expands with the generations. To prevent

the explosion of the number of solutions, the sharing

techniques should be introduced in this approach.

For designers, it is not useful when the Pareto-

optimum solutions are concentrated on one point.

Therefore, the Pareto-optimum solutions that have high

diversity should be obtained. The sharing (horn94) is

the operation to scatter the solutions over the Pareto-

optimum solution set.

Usually, the sharing function s(d) is de�ned with the

distance d(xi; xj) between two individuals i and j as fol-

lows,

s(d) = max

�
0; 1�

d

�share

�
: (1)

Where �share is the parameter to share the solutions

and called a sharing radius. Then the values of the �tness

function is changed with the sharing function.

In this study, the sharing does not change the �tness

function but reduces the size of population directly, like

Figure 2. Therefore, only one population remains within

the sharing radius.

F1

F2

s

remained population
discared population

Figure 2: Schematic of sharing (2 objectives)
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total population

island 1 island 2 island N

divide population into islands
1

sharing5

island 1 island 2 island N

perform a genetic algorithm in each island
2

island 1

island 2

island N

migration3

island Nisland 2island 1

total population

gather populations from islands4

Figure 3: Distributed genetic algorithms with sharing

Because GAs have intrinsic parallelism (gold89), it is

easy to perform GAs in parallel. The ways of paralliza-

tion of genetic algorithms is roughly divided into two

ways. One of them is to parallelize evaluations and the

other is to parallelize population. In the way of paral-

lelization of population, the population is divided into

small groups that are called islands and this approach

is called distributed genetic algorithms (DGAs). A ge-

netic algorithm is carried out in each island separately.

After some generations, some individuals in each island

are chosen and sent to another island. This operation is

called migration. The migration interval is a parameter

in DGAs. The number of individuals that migrate to

another islands is another parameter that is called a mi-

gration rate. There are a lot of studies concerned with

distributed genetic algorithms. It was made clear that

DGAs can �nd the optimum with small population size

and short calculation times (tane89, star91, muhl91).

DGAs can be easily expanded to the application in

MOPs. In this case, DGAs are also roughly divided into

two approaches. Those are the VEGA approach and the

island model approach. In the island model approach,

the population is divided into sub-populations which are

called islands. In the islands, ranking or non ranking

selections are performed. After a certain generations,

some individuals are chosen and are migrated to another

islands.

There are few studies concerned with DGAs in MOPs.

Hiyane examined the DGAs in MOPs and concluded

that DGAs are powerful algorithms under parallel com-

putations (hiya97). However, the diversity of solutions

becomes low since the population size becomes small

compared to GAs with a single population. Therefore,

the sharing should be carried out for the total popula-

tion to increase the diversity. A DGA with the sharing

to the total population is the base idea of the proposed

approach explained in the following chapter.

3 Distributed Genetic Algorithms with

Sharing

In this study, a new approach of distributed genetic al-

gorithms in multiobjective optimization problems is pro-

posed. In this approach, the island model is taken for a

distributed genetic algorithm and a sharing is performed

when the number of the frontier solutions exceed the cer-

tain size. The concept is shown in Figure 3 and the 
ow

of the algorithm is shown in Figure 4.

In distributed genetic algorithms in multiobjective

optimization problems, the size of sub-population is

smaller than that of canonical genetic algorithms.

Therefore, the sharing does not take much time com-

pared to the single island. This leads that objective

functions can be called more. On the other hand, the

diversity of the solutions are getting smaller. To increase

the diversity, the sharing for the total population is nec-

essary. The proposed algorithm is the combination of

the advantages of distributed genetic algorithms and the

sharing for the total population. At �rst, the total pop-

ulation is divided into several islands. Then, a simple

genetic algorithm is performed in each island. After cer-

tain generations, the migration is carried out. During

the distributed genetic algorithm, the size of the frontier

solutions are increasing. When their size exceeds a cri-

terion, the sharing is performed in the total populations.

And again, the total population is divided into several
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begin

  (initialization)
  determine

the number of islands M
he population size in one island N
the number of sharing p

  divide population into islands
  k = 0

  (generation k)
  while convergence condition do

i=0

(in ith island)
while i<M do

evaluaton
crossover
mutation
sharing (OPTIONAL)

end

(migration)
if  migration condition then

begin
migration

end

(sharing)
if  sharing condition then

begin
gather population from islands
sharing
divide population into islands

end

  end
end

Figure 4: Flow of distributed genetic algorithms with

sharing

islands. This routine is continued until the convergence

condition is satis�ed. In this algorithm, the sharing in

each island is not performed usually, but when it takes a

lot of time to share the solutions in the total population,

the sharing is also performed in each island.

It is supposed that the proposed algorithm has the

following four advantages. At �rst, with this algorithm,

an e�cient sharing can be performed. Therefore, the so-

lutions have high diversity. Secondly, when the sharing is

performed only in each island, the size of sub-population

is unbalanced in each island. This algorithm can cor-

rect the sizes of sub-populations. This means that load

balance in parallel computing can be performed auto-

matically. Thirdly, there is a possibility to remove the

operation of migration. In this study, migration is per-

formed. However, it is supposed that the division of the

total population into multiple islands has also the e�ect

of migration. Finally, the setting of the sharing param-

eter in the entire design space is much easier than that

of the sharing in islands since it is di�cult to grasp the

number of frontier solutions in each island.

The proposed algorithms is examined and discussed

with numerical examples in the following chapters.

4 Numerical Examples

4.1 Function Problems

To examine the performance of the proposed approach,

the following simple MOP is solved and the Pareto-

optimum solutions are derived in the next section.

Objective functions

fi = �xi (i = 1; 2; : : : ; n) (2)

Constraints

gj = �xj (j = 1; 2; : : : ; n) (3)

gn+k = xk � 6 (k = 1; 2; : : : ; n) (4)

g2n+1 = 1� x1 � x2 � : : : xn (5)

This MOP is very simple, but it is easy to expand to

arbitrary N-dimension problems. In most previous stud-

ies there are only two objective functions. The MOP

that has two objective functions is easy to demonstrate

because it is easy to represent the Pareto-optimum so-

lutions. Hence, it is easy to grasp the e�ect of the al-

gorithms. However, the MOP which have more than

4 objective functions have another problems compared

to the MOP which have only two objective functions.

Those are the problems of the population size that needs

to express the Pareto solutions and the problem of the

di�culty of the sharing. Therefore, even when the algo-

rithms that lead good solutions in the problem that has

two objective functions, it sometimes happens that the

algorithms do not work for the problems that has more

than three objective functions. Because of this, it is nec-

essary to test and discussed the algorithm in the MOP

where there are more than three objective functions.

On the other hand, it is very di�cult to grasp the

Pareto-optimum solutions where there are more than 4

objective functions in MOPs because it is impossible to

draw all of the Pareto-solutions at once. It is another

problems to overcome and this is the future challenge of

the MOPs.

As it is mentioned before, to examine the e�ect of the

algorithms, the real Pareto-optimum solutions should be

known. In this numerical example, it is very easy to �nd

the real Pareto-optimum solutions and it is also easy to

get the high accuracy of the solutions. In Figure 5, the

Pareto-optimum solutions are shown in case of two and

three objective functions, respectively.

4.2 Genetic Algorithm in Each Island

In this study, genetic operators are performed in each

island. Those are crossover and selection. In this com-

putation, the mutation is not performed and crossover

rate is 1. Because this MOP is in real value space, the

real value vectors are used as coding instead of binary
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a) two objectives b) three objectives

Figure 5: Pareto-optimum solutions (2 and 3 objectives)

coding. Because of this coding, conventional crossover

operations can not be used. Here the normal distribu-

tion crossover is used as follows. When there are n design

variables, n+1 points are selected probabilistically. The

center of gravity G of n+1 points is derived. Then the

child is derived the following equation.

�!
C =

�!
G +

NX
i=1

N(0; �2i )
��!
GPi (6)

Example of the crossover where there are two objec-

tives are shown in Figure 6.

G
Normal
Distribution

s1

s2

s3
P1

P2

P3C

Figure 6: Normal distribution crossover

When a new child break the constraints, another child

is derived using the following equation and shown in Fig-

ure 7.

���!
Cnew =

�!
P1 + �

���!
P1C1 (7)

In this equation, � is reduced until the child satis�es

constraints. Only rank 1 solutions of the frontier solu-

tions are chosen when the selections. The size of frontier

solutions is not limited in this numerical examples.

4.3 Evaluation methods of algorithms in multiob-

jective optimization problems

In this study, the algorithms are evaluated from the fol-

lowing 4 points of view. Those are the number of solu-

tions, error, cover rate, and coe�cient of variation.

P1

C1C2

Feasible region

C3

Figure 7: Generation of child satis�es the constraints

The number of solutions

It is said that the size of population is one of most impor-

tant index for the performance of algorithms in MOPs.

Especially, the size of population of rank 1 is very im-

portant. If the algorithms can not �nd enough number

of rank 1 solutions, designers can not grasp the rela-

tionship between the objective functions. In that case,

it can be said that the algorithm cannot produce good

solutions. On the other hand, an extra population in-

creases the computational cost. Therefore, there should

be enough number of solutions that have enough accu-

racy and enough cover rate.

Error

When the real Pareto-optimum solutions are known, the

accuracy of the solutions is one of the important index

for the Pareto optimum solutions. The error of solutions

E can be derived as follows

E =

vuut nX
i=1

(di)2=N (8)

where d is the distance from solution to the real Pareto-

optimum solutions. It is obvious that the real Pareto-

optimum solution should be known to derive the accu-

racy. Therefore it is rather di�cult to use this as the

index in real-world problems.

Cover rate of solutions

The index of error is not enough for evaluating the

Pareto-optimum solutions of MOPs. For example, if

there is only one Pareto-optimum solution. The accu-

racy is very high but it is not enough to express the

Pareto-optimum solutions.

To support the disadvantage of the accuracy, a cover

rate is proposed in this study. At �st, the maximum and

minimum values of each object function are searched.

The distances between maximum and minimum are di-

vided by a certain number. The number of intervals

where a solution exists is counted. Total number is av-

eraged by the total number of intervals. This average

number becomes the cover rate. When this index is close

to 1, the solutions well cover from the maximum to the

minimum of the Pareto optimum solutions. This is the

only index for �nding solutions covered the entire area
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or not. Therefore, this index should be used with the

index of error.

Coe�cient of variation

Ideally, the Pareto-optimum is shown with the smallest

number of solutions. To �nd the extra solutions, the co-

e�cient of variation is introduced in this study and it

expresses the index of diversity. The coe�cient of vari-

ation is derived as follows. At �rst, one of the solutions

are focused on and the number of population that are in

the certain distance is counted. Other solutions are also

focused and the number of them are counted. Then, the

average of standard deviations of this value becomes the

coe�cient of variation of each solution. Therefore, when

the coe�cient of variation becomes 1, the solution has

high variety. `

5 Results and Discussions

In this study, the problem that is explained in sub section

4.1. This problem has 4 objective functions is solved. All

results are the average of 10 trials. Migration is operated

every other generation and 10% of each population of the

island migrates to the other island randomly. These pa-

rameters a�ect to the solutions and the discussion about

it is the future topics.

The proposed algorithm that is explained in section

3 can be performed on a parallel computer. However, to

make the characteristics of the e�ects of the algorithm

clearly, every numerical example is performed on a single

CPU computer.

5.1 Distributed E�ect

In Table 1, the results of distributed the genetic algo-

rithm (DGA, island model) and the canonical genetic

algorithm (CGA, 1 island) is shown. In the both cases,

total initial population size is 1000, and the calculation is

terminated when the evaluation function is called more

than 1000 times. In the CGA, the population size is re-

duced about 80 by sharing when the size exceeds 2500.

In the DGA, there are 10 islands and the sharing is per-

formed only in the islands. This means that the sharing

is not performed to total population in DGA. The pop-

ulation size of each island is reduced by about 50 by the

sharing when the size exceeds 250.

Table 1: E�ect of distribution

1 island

10 islands

number of
solutions error

cover
ratio generations

coefficient
of

variation

calculation
time [s]

1980

2690

0.191

0.196

0.856

0.853

2.46

3.10

6

6

194.9

34.3

From this results, it is obvious that it takes much time

in the CGA compared to the DGA. In the DGA, the size

of population in island is not so big and it does not take

much time in the sharing operation. On the other hand,

the error and the cover ratio are almost the same. There-

fore, when the calculation time is termination condition,

the accuracy or the cover rate will increase in the DGA.

On the other hand, diversity(coe�cient of variation) is

not so good in the DGA because each island has each

frontier solutions and there exist the overlapped solu-

tions.

5.2 Distributed Genetic Algorithm with sharing

It is clari�ed that the DGA derives the solutions that

have high accuracy and high cover rate, but low diver-

sity. When the diversity is low, it means that the solu-

tions are gathered near one point. In MOPs, not only

the accuracy of the solutions but also the high diversity

is also important. The proposed algorithm shown in sec-

tion 3 is one of the solutions to �nd the Pareto-optimum

solutions that have high diversity.

In the numerical examples, the sharing reduces the

total population size into 80 from 2500.

In Tables 2 and 3, the results of the proposed algo-

rithm are shown. The results in Table 2 are derived

when the calculation is terminated after 2000 times of

the objective function call. The results in Table 3 are

also derived when the calculation is terminated after a

certain calculation time.

From Table 2, it can be seen that the DGA with shar-

ing can �nd solutions that have high accuracy, high cover

rate, and high diversity. The sharing performed in the

proposed algorithm worked well to �nd good solutions.

On the other hand, this sharing takes a lot of time. Table

3 points that the DGA with the sharing iterates only 3

generations. Therefore, it can be said that this solutions

are not evolved well.

From these results, the DGA with the sharing can de-

rive good solutions. Therefore, it has an advantage for

the problems where it takes a lot of time to evaluate the

objective function, such as structural optimization prob-

lems. However it has a disadvantage that the calculation

time is very short.

Table 2: DGA and DGA with the sharing (termination

condition = number of function call)

DGA

DGA with
sharing

number of
solutions error cover

ratio
generations

coefficient
of

variation

calculation
time [s]

3888

3079

0.171

0.153

0.855

0.855

4.11

3.10

8.7

10.1

91.0

563.1

To make clear the advantage of the DGA with the

sharing when the calculation time of the function evalu-

ation is not short, function sleeps 0.001[s], 0.01[s], 0.05[s],

or 0.1[s] when the function is called. In Figures 8 and

9, the error and cover ratio of solutions that are derived

74



T
a
b
le
3
:
D
G
A
a
n
d
D
G
A
w
ith

th
e
sh
a
rin

g
(term

in
a
tio

n

co
n
d
itio

n
=
ca
lcu

la
tio

n
tim

e)

D
G

A

D
G

A
 w

ith
sharing

num
ber of

solutions
error

cover
ratio

coefficient
of

variation
generations num

ber of
function

call

3422

1581

0.182

0.226

0.856

0.847

3.65

2.15

7.8

3.0

18998

4985

b
y
b
y
th
e
D
G
A

a
n
d
th
e
D
G
A

w
ith

th
e
sh
a
rin

g
a
re

ex
-

p
ressed

w
h
en

th
e
sleep

tim
e
o
f
th
e
fu
n
ctio

n
is
ch
a
n
g
ed

resp
ectiv

ely.0
.0

5

0
.0

6

0
.0

70
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.1

2
5

S
leep tim

e

D
G

A
 w

ith sharing

D
G

A

0
.0

8

0
.0

9

Error

0
.1

0
.1

1

0
.1

2

F
ig
u
re

8
:
E
rro

r

0.850

0.875

0.900

0.925

0.950

Cover ratio

0.000
0.025

0.050
0.075

0.100
0.125

S
leep tim

e

D
G

A
 w

ith sharing

D
G

A

F
ig
u
re

9
:
C
o
v
er

ra
tio

F
ro
m

F
ig
u
res

8
a
n
d
9
,
it
is
cla

ri�
ed

th
a
t
w
h
en

th
e

sleep
tim

e
o
f
th
e
fu
n
ctio

n
is

lo
n
g
,
th
e
q
u
a
lity

o
f
th
e

P
a
reto

-so
lu
tio

n
s
th
a
t
a
re

d
eriv

ed
b
y
th
e
D
G
A
w
ith

th
e

sh
a
rin

g
a
re

b
etter

th
a
n
th
o
se

d
eriv

ed
b
y
th
e
D
G
A
.
T
h
e

co
v
er

ra
tio

o
f
th
e
D
G
A

w
ith

th
e
sh
a
rin

g
is
a
lw
a
y
s
b
et-

ter
th
a
n
th
a
t
o
f
th
e
D
G
A
.
T
h
is
resu

lt
m
ea
n
s
th
a
t
th
e

p
ro
p
o
sed

a
p
p
ro
a
ch

is
u
sefu

l
w
h
en

it
ta
k
es

m
u
ch

tim
e
to

eva
lu
a
te

o
b
jectiv

e
fu
n
ctio

n
s
su
ch

a
s
in

stru
ctu

ra
l
d
esig

n

p
ro
b
lem

s.

5
.3
S
h
a
r
in
g

in
b
o
th

s
u
b
-p
o
p
u
la
tio

n
a
n
d

to
ta
l

p
o
p
u
la
tio

n

T
h
e
p
ro
p
o
sed

d
istrib

u
ted

g
en
etic

a
lg
o
rith

m
w
ith

th
e

sh
a
rin

g
ta
k
es
a
lo
t
o
f
tim

e
b
eca

u
se
o
f
th
e
sh
a
rin

g
w
ith

to
-

ta
l
p
o
p
u
la
tio

n
w
h
en

th
e
ca
lcu

la
tio

n
tim

e
o
f
th
e
o
b
jectiv

e

fu
n
ctio

n
s
is
v
ery

sh
o
rt.

T
o
sh
o
rten

th
e
to
ta
l
ca
lcu

la
tio

n

tim
e,
th
e
sh
a
rin

g
sh
o
u
ld

b
e
p
erfo

rm
ed

n
o
t
o
n
ly
w
ith

th
e

to
ta
l
p
o
p
u
la
tio

n
,
b
u
t
a
lso

in
ea
ch

isla
n
d
.
In

th
is
ca
se,

th
e

sta
tu
s
in

th
e
isla

n
d
s
a
re

d
i�
eren

t,
th
e
sizes

o
f
th
e
p
o
p
-

u
la
tio

n
o
f
th
e
isla

n
d
s
a
re

d
i�
eren

t
ea
ch

o
th
er.

In
th
is

sectio
n
,
th
is
ty
p
e
o
f
sh
a
rin

g
is
ca
lled

th
e
h
y
b
rid

sh
a
rin

g
.

T
h
e
resu

lts
a
re

sh
o
w
n
in

T
a
b
le
4
.
In

th
e
h
y
b
rid

sh
a
r-

in
g
a
lg
o
rith

m
,
th
e
ca
lcu

la
tio

n
tim

e
is
sh
o
rter

th
a
n
th
a
t

o
f
D
G
A

w
ith

th
e
sh
a
rin

g
.
T
h
e
d
iv
ersity

(co
e�

cien
t
o
f

v
a
ria

tio
n
)
is

a
lso

m
a
d
e
p
ro
g
ress

a
n
d
th
is

resu
lt

sh
o
w
s

th
e
g
o
o
d
e�
ect

o
f
th
e
sh
a
rin

g
b
o
th

in
ea
ch

isla
n
d
a
n
d

w
ith

th
e
to
ta
l
p
o
p
u
la
tio

n
.
O
n
th
e
o
th
er

h
a
n
d
,
th
e
a
c-

cu
ra
cy

o
f
th
e
so
lu
tio

n
s
is
n
o
t
so

g
o
o
d
.
T
h
is
co
m
es

fro
m

th
e
la
ck

o
f
th
e
n
u
m
b
er

o
f
th
e
so
lu
tio

n
s.

T
h
erefo

re,
th
e

p
a
ra
m
eter

o
f
sh
a
rin

g
sh
o
u
ld

b
e
tu
n
ed

u
p
.

T
a
b
le
4
:
D
G
A
,
D
G
A
w
ith

sh
a
rin

g
a
n
d
H
y
b
rid

sh
a
rin

g

D
G

A

D
G

A
 w

ith
sharing

num
ber of

solutions
error

cover
ratio

coefficient
of

variation
generations calculation

tim
e [s]

3888

3079

0.171

0.153

0.855

0.855

4.11

3.10

8.7

10.1

91.0

563.1

H
ybrid

sharing
2922

0.183
0.858

2.43
10.0

275.5

6
C
o
n
c
lu
s
io
n
s

1
.
In

th
is
p
a
p
er,

a
n
ew

m
eth

o
d
o
f
d
istrib

u
ted

g
en
etic

a
lg
o
rith

m
s
fo
r
m
u
ltio

b
jectiv

e
o
p
tim

iza
tio

n
p
ro
b
-

lem
s
is
p
ro
p
o
sed

.

2
.
In
d
ex
es

th
a
t
ca
n
ev
a
lu
a
te
th
e
p
erfo

rm
a
n
ce

o
f
a
lg
o
-

rith
m
s
a
re

in
tro

d
u
ced

.
T
h
o
se

a
re

p
o
p
u
la
tio

n
size,

erro
r,
co
v
er
ra
te,

a
n
d
co
e�

cien
t
o
f
v
a
ria

tio
n
.
T
h
ese

in
d
ex
es

ca
n
b
e
a
p
p
lied

to
th
e
p
ro
b
lem

s
th
a
t
h
a
v
e

m
o
re

th
a
n
th
ree

o
b
jectiv

es.

3
.
A

n
u
m
erica

l
ex
a
m
p
le

is
sh
o
w
n

to
ex
p
ress

th
e

e�
ectiv

en
ess

o
f
th
e
p
ro
p
o
sed

m
eth

o
d
.

C
o
n
v
en
-

tio
n
a
lly,

th
e
m
u
ltio

b
jectiv

e
o
p
tim

iza
tio

n
p
ro
b
lem

s

w
ith

o
n
ly
tw
o
o
b
jectiv

es.
T
h
is
ex
a
m
p
le
in
tro

d
u
ced

h
ere

ca
n
b
e
ex
ten

d
ed

to
a
rb
itra

ry
n
u
m
b
er

o
f
d
i-

m
en
sio

n
s
in

th
e
d
esig

n
sp
a
ce.

A
t
th
e
sa
m
e
tim

e,

th
e
a
ccu

ra
te

P
a
reto

-o
p
tim

u
m

so
lu
tio

n
s
ca
n
b
e
d
e-

riv
ed

ea
sily.

4
.
In

th
e
p
ro
p
o
sed

a
p
p
ro
a
ch
,
th
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th
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n
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number, the sharing is performed with the to-

tal population that is constructed from the sub-

populations.

5. The proposed approach is veri�ed by the numerical

examples. It is clari�ed that the sharing with the

total population increases the diversity and the ac-

curacy of the solutions. This approach takes some

time in the sharing, but this approach becomes use-

ful when it takes much time to evaluate objective

functions.

6. The algorithm where the sharing is performed in

islands and in total population is also performed.

This approach reduces the calculation time and

makes some increase in the diversity, while the ac-

curacy of the solutions is decreased.
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